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Coupling Between Guided Surface Waves,
Lateral Waves, and the Radiation Fields

by Rough Surfaces—Full-Wave
Solutions

EZEKIEL BAHAR, SENIOR MEMBER, IEEE

Abstract—In this paper explicit expressions are presented for the
guided surface waves and lateral waves that are excited when
radiation fields are incident upon rough surfaces. Similarly, expres-
sions are presented for the radiation fields scattered by rough surfaces
that are excited by surface waves and lateral waves. In addition,
coupling between the surface waves and the lateral waves due to
surface irregularities is considered in detail.

The solutions, which are based on a full-wave approach to the
problem, are subject to the exact boundary conditions at the irregular
interface. These are shown to be consistent with the reciprocity
relationship in electromagnetic theory.

The validity of the approximate impedance boundary condition is
examined and consideration is given to excitation at the grazing
incidence, the Brewster angle, and to waves incident at the critical
angle for total internal reflection. Optimum conditions are deter-
mined for coupling between the radiation fields, the surface waves,
and the lateral 'waves incident upon irregular boundaries. Thus this
work is applicable to problems of radio wave propagation near an
irregular interface between two media and excitation of guided waves
by irregular dielectric structures.

I. INTRODUCTION

ADIO WAVE PROPAGATION over irregular sur-
faces with variable electromagnetic parameters has
been investigated extensively. The methods used to analyze
this problem vary considerably and the results significantly
depend upon the approximate assumptions made to sim-
plify the derivations. Thus, for instance, employing the
Rayleigh hypothesis, the scattered fields are represented by a
discrete spectrum of upward traveling waves [1], and, using
the Kirchoff approximations, the physical optics solutions
are obtained by characterizing the irregular boundary by the
Fresnel reflection coefficient for the local tangent plane [2].
The solutions derived in this paper are based on a
full-wave approach [3], [4]. Thus the total fields are ex-
pressed in terms of a complete spectrum of upward and
downward traveling radiation fields, lateral waves, and
surface waves. At the irregular boundary, the total fields are
subjected to the exact boundary conditions. Since the
individual terms in the complete field expansions do not
satisfy the boundary conditions for irregular surfaces, uni-
form convergence of the field expansions cannot be
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assumed. Thus using the full-wave approach, Green’s
theorem is employed to avoid term by term differentiation of
the field expansions. An approximate impedance boundary
condition has also been considered in detail and the full-
wave solutions have been compared with earlier solutions to
this problem [5], [6].

In this paper, explicit full-wave solutions are given for the
guided surface waves and lateral waves excited by plane
waves incident upon rough surfaces. These solutions are
provided in a form that can readily be used by engineers who
are not familiar with the analytic techniques used in their
derivation. They can also be applied to periodic and random
rough surfaces [5], [6]. Since the scattered radiation fields,
due to incident plane waves, vanish as the transmitter or
receiver approach the surface of the irregular boundary, the
surface waves and the lateral waves constitute the dominant
contribution to the total fields near the boundary.

Coupling between the surface waves and the lateral waves
propagating over irregular boundaries is considered in
detail. The region of the irregular surface where maximum
coupling occurs between the lateral and the surface waves is
determined.

The full-wave solutions are shown to be consistent with
the reciprocity relationship in electromagnetic theory. Thus
plots of the scattered surface waves and lateral waves as
functions of the incident angle of the plane waves also
represent the scattered radiation pattern for an irregular
surface excited by incident surface waves and lateral waves.

Several illustrative examples are given in Section V with
special consideration given to excitation at the grazing
incidence, the Brewster angle, and the critical angle for total
internal reflection. The validity of the approximate im-
pedance boundary condition is also examined.

II. FULL-WAVE SOLUTIONS FOR THE SCATTERED
SURFACE WAVES EXCITED BY LINE SOURCES AT
LARGE DISTANCES FROM A ROUGH SURFACE
AND THE RECIPROCAL PROBLEM

A line source at large distances above a rough surface will
excite scattered radiation fields as well as guided surface
waves [4]. Since the scattered radiation field approaches
zero as the observation point approaches the surface,
0f — m/2, the surface wave is the dominant term near the
interface y = h(x). The coupling of plane waves into surface
(guided) waves of the structure by surface irregularities is
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Fig. 1. The scattered surface waves and lateral waves due to incident

plane waves over a rough surface.

also relevant to problems of coupling into and out of
dielectric waveguides.

On expressing the electromagnetic fields in terms of
generalized Fourier transforms and imposing exact bound-
ary conditions at the irregular boundary [3], [4], it can be
shown that the scattered vertically polarized surface wave at
(x.y) due to a magnetic line source of intensity K (volts)
located at (xo,y0) in medium O (Fig. 1) is

. ) iw\1? )
H:(x,y) = |Hb| exp [~ iko po] (5) 4iko LF(C,,C’)

I(C,,Ch,L) exp [—i(Byx + uo,y)]  (2.1a)

: Ci Cys = 56805
F(C,,C') = — 2.1b
CO =i e D

and
. 1 L . :
I(C,,C' hL) = 3L ’ exp [iugh + i(f; — B')x] dx. (2.1c)
‘—-L

An exp (iwt) time dependence is assumed and | H | is the
magnitude of the unperturbed incident wave at the origin:

| Hi)l = Kw,go/2[2mkopo] /. (2.1d)

The irregular deterministic boundary is given by (Fig. 1)

y = h(x), —-L<x<L (2.2a)
and p, = (x3 + y3)V? > 1is the distance from the magnetic
line source to the origin. The wavenumbers for mediaOand 1

are

y>h

k— ‘ko = w(ﬂogo)l/z,
y<h

‘k1 = oy, 81)1/27 (220)

and k. is the wavenumber at the carrier frequency w,. Itis
assumed here that g and ¢ are not functions of x and u, = po.
The complex refractive index is

n =\/—,=  £1/€0-

The surface wave parameters are solutions to the modal
equation

(2.3)

Uosty + Ugséo =0, Im (o,,) <O (24a)
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thus
B, = koS, = k1 Sy, = k &
s — MO0s — M1l — R 1+8r
—ko
ups = ko Co, =
0 oo 1+e¢,
g
=k, Ci,=k r 2.4b
Uys 1415 1 1+ ( )

and for a plane wave incident at angle ¢, in medium 0
B = ko1 56,1 = ko, sin 02).1
ué),l - kO,lciO,l = kO,l COS 01;)’1. (240)
For a plane wave at grazing incidence 65, — n/2 and w = ,
IF(CS’CB =0) |wc
1 1/2
(1 - —) - 1} e2/(e} — 1)%(e, + 1)

r

(2.5a)

@c

In this work it is convenient to normalize F such that

Fp(C,,C') = F(C,,.CY) | F(C0) | (2.5b)
Thus in (2.1a), the input term | Hg| exp [—iko po] is the
incident radiation field and the output term

exp [—i(B, x + u,y)] is the scattered surface wave (see Fig,
1). The coupling phenomenon is represented by F(C,,C'),
which is a function of the angle of incidence and the ground
parameters only, and I(C,,C',h,L), which is the only term
that depends on the expression for the rough surface /(x).
Similarly it can be shown that for backward-traveling
surface waves of complex magnitude H,, at the origin, the
scattered radiation field at the observation point x,y is
. _ i
st(x9y) - HsO ((U

<

1/2
) ko Ln(1 — 1/62)

exp [—ikop
'F(Cf,cs)I(Cf,cs,h,L)[sz,EW‘i/zl
Oc

where H,, the amplitude of the incident (unperturbed)
surface waves at the origin, is [3]

HSO = HS(O,O)

(2.6a)

= Kiweg exp [ — i(B;xo + uo,yo)l/n(l — 1/eZ)  (2.6b)
and
_ C{Cy, + SESo,
FICTC) = (s o1 + 1a) (:6)
FA(CC) = F(CT.C)/ |[FOC) ., 2:6d)

1t
IC.CohL) = o | exp [iubh + i(B, + B/)x] dx.  (2.6e)
L

‘Equation (2.6a) reduces to (2.1b) on interchanging the

locations of the source and the receiver. Thus

Po—=p X = Xo Yy—=Yo 0o— —65 (27)
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and the results are consistent with reciprocity relationships
in electromagnetic theory. As a consequence, the plot of the
scattered surface wave as a function of 6} (2.1a) is the same as
the plot of the scattered radiation field as a function of 64
(2.6a). In (2.6a), the input term is H, the incident surface
wave, and the output term is exp [ —ikp]/[2k,.p]"?, corre-
sponding to the scattered radiation field. The expression
between these two terms represents the coupling
phenomenon. ‘

Using the approximate impedance boundary condition
[5], the expression for the scattered surface wave due to a
magnetic line source at (x,,yo) is also of the form (2.1b)
except that here [5], [6]

F(Co,C") = 2,80,(S0s — So)/(Ch + z,)(1 — 22)"/* (2.8a)
and
|F(CesCo = 0) o, = | (1 — 22)2 — 1],
h@$ﬂ=HQCﬂFQ9M
where z, is the normalized surface impedance
zg=Z o= (e, — 1)'?/e,,  Im(z)>0 (2.9a)

and the surface-wave parameters are solutions of the modal
equation

(2.8b)

= —koz,. (2.9b)

Uos
Thus
Bs=koSos = ko(1 —22)¥?,  Im (B,) <0
and
Ups = ko Cos = (2.9¢)

The corresponding expression for the scattered radiation
field due to an incident surface wave of complex amplitude
Hg, at the origin is

—koz;,  Im (ug) <O.

i\ 1/? 1—z)4?
HZs(X,Y) = Hy, (ac) 2k0cL£T)—
ex ik
F(Cr,CI(C!.C, hL)[zplg—]f/’;] (2.10a)
in which
HsO = HS(O’O)
Kiwey z, (2.10b)

== [—i(Bxo + ttosyo)]

F(C!,C,) = z,S04(Sos + SE/(Ch + 2)(1 — 2 (2.10¢c)
Fy(C!,Cy) = F(C',C,)| F(0,Cy)| o, (2.10d)

and I(C/,C,,h,L) is given by (2.6d). Thus (2.10a) reduces to
(2.8a) provided that one interchanges the locations of the
source and the receiver (2.7) and the solutions derived from
the impedance boundary conditions are also consistent with
reciprocity. It should be pointed out, however, that using the
impedance boundary condition one obtains an extraneous
coupling term D(C’,C,) [6], which for moderately smooth
boundaries is proportional to Z (dh/dx)>. The term D(C/,C,)

2y
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has no counterpart in the exact analysis [4] and is therefore
neglected in the present derivations.

Using a physical-optics- or Kirchoff-type approximation
for the surface wave on the boundary y = h(x), for x > x,

st(x,y) = Hi(x,y)
= ;(—lg%exp [—i(Bu(x — X0) + tos(¥ + ¥o))]
(2.11a)
and
—led, « (7 xE):a_HZg%x_’)Q
= —i[f - (Bs@, + uosd,)|Hi(x,y). (2.11b)

Thus on substituting (2.11) into the Helmholtz equation [2]
one obtains H}, = O for the physical optics approximation
to the scattered radiation (far)field. Thus the physical optics
approach fails to determine the scattered radiation fields in
the Fraunhofer zone, when the incident field is a surface
wave, because the physical optics approximation for the
surface wave at the boundary is not appropriate.

III. FUuLL-WAVE SOLUTIONS FOR THE SCATTERED
LATERAL WAVE EXCITED BY LINE SOURCES AT
LARGE DISTANCES FROM A ROUGH SURFACE
AND THE RECIPROCAL PROBLEM

In addition to the scattered radiation field and the
scattered surface wave (Section II), a plane wave incident
upon arough surface will couple into a lateral wave [4]. Thus
the scattered vertically polarized lateral wave at (x,y) due to
a magnetic line source of intensity K (volts) located at
(x0,y0) in medium 0 (Fig. 1) is

(2L/2.)
2n (Li/2)7

-I(C%C L) exp [—i(k, Ly + koL,)]

H, = |Hj| exp [—iko po] F(C°,CY)

(3.1a)
where

F(C°,CY) = (nC.C§ + S5S3)/(

and

b+ Ci/n)n*?e, (3.1b)

L

I(C°ClhL) = n[

exp [iuph + i(f° — B)x] dx (3.1c)

in which A, is the free-space wavelength at the carrier
frequency o,:

ﬁ6= koSS = k1S‘i =ky =kon
ug =k0Cg =k0\/ 1 - nz
u‘i = kIC‘i =0. (3.2)

The parameters for the incident wave are the same as in
Section II, (2.1d) and (24b). The lateral waves are of
practical significance only for low-loss medium 1 where
i(s,l)

n=n'—in"= 84 =sind =sin (§' -

~ sin 8’ — i8” cos &’ (3.3)
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thus
Wy + Bx = ke[cos (8)y + sin (3)y tan (9)
+ sin (8)(x — y tan d)]
~ ko[y/cos &' + n(x — y tan o')]
=koLs+ k{L; (3.4a)
and the distances L; and L, are (Fig. 1)
L; = y/cos &' and L,=x—ytan d. (3.4b)

Equation (3.1a) is valid for |k;|L, > 1 in view of the
steepest descent method used to derive it. For a plane wave
incident at the critical angle 0% = &'
F(C%C = cos &) |,
| {1 = (w/n)*]"? cos 6 + n'y/n’?
Al = (P 4 L = (/)

(3.5a)

o=0,

1)
—Kw,& (J

1/2
ia)) exp [—iko(y + yo)/cos 6" — iky(x — xo — (¥ + yo) tan &')]
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interchanged. Thus

Po— P XX 6~ —05. (3.7)

Yy—=JYo
Hence (3.6) and (3.1) are consistent with the reciprocity
relationship. In (3.6), the input term is the incident lateral
wave Hj, and the output term exp [—ikq p)/[27ko.p]*? is
the scattered radiation field. The expression between these
terms F(C/,COI(C/,C°h,L) represents the coupling
phenomenon.

Using the constant surface impedance concept, the
lateral-wave contribution to the total field due to the branch
cut Im (u,) = 0 vanishes. Thus if the lateral wave constitutes
a significant part of the total field the surface impedance
concept cannot be used [3].

Furthermore, a physical-optics- or Kirchoff-type approx-
imation for the lateral wave on the boundary y = h(x) for
[ky|(x — xo — (v + yo) tan 8') > 1, is

H,= Hi(x’y) = (1 _ n2)2(27t)2n3/2

and the function F (3.1b) is normalized such that
Fy(C°,CY) = F(C°,CY)/ | F(C?,Cl = cos &)y, (3-5b)

In (3.1a) the input term | HY | exp [—iko po) is the incident
radiation field and the output term exp [—i(k,L; + koLs)]
is the scattered lateral wave (see Fig. 1). As in Section II, the
coupling is represented by the factors F(C’.C’) and
1(C.CLh,L). '

Similarly, for a backward-traveling lateral wave of com-
plex magnitude Hj, at the origin, the scattered radiation
field at the observation point (x,y) is

i 1/2
H;l = _HIO (a) 2kOcL(1 - nz)n3/2
exp [—ikop)
. F(Cf,Ca)I(Cf,Cih,L)[zﬂTcp](l)/z (363)
where
Hy =

@ 12 . Yo . /
—Kw.g (5) exp | —iko (m) — iky(xo — yo tan é ) |
(1 — n22(2n)*n>>[(xo — yo tan &')/A.J*"?

[{x — xo — (v + ¥o) tan 'Y/A T (3.82)

and

e, - (7 x )= T = i (5, + ) Hi(x)

(3.8b)

On substituting (3.8) into the Helmholtz equation [2],
H., =0 for the physical optics approximation to the
scattered radiation field. Thus the physical optics approxi-
mation for the incident lateral wave at the boundary cannot
be used to determine the scattered radiation fields in the
Fraunhofer zone.

IV. CoUPLING BETWEEN THE LATERAL WAVES
AND THE SURFACE WAVES OVER A
RoUGH SURFACE—FULL-WAVE SOLUTIONS

In addition to coupling between the radiation fields and
the surface and lateral waves considered earlier, the excita-
tion of a scattered surface wave due to an incident lateral
wave over a rough surface and the reciprocal problem (Fig.
2) is considered here in detail.

The expression for the incident lateral wave near the

= d (x W1 (1,y) @.1)

in which ,(u,y) is the basis function associated with the
contribution from the branch cut Im (u,) = 0 [3]. Thus on
applying the orthogonality relationships between the basis

(3.6b) boundary for
|[kyl(x — xo — yo tan 6') > 1,
Xo< —L, and |n| <1is[3]
1) = K050 XD [ 30 = (s = )] X (— o a(u)
o (1 — n?)2(2m) 2[if’(x — xo — yo tan &)y (u)
F(C!,C%) = (nC, Ch — SESBY(Ch + Clfnn®%s,  (3.60)
.L
I(C7,C°h,L) = %‘ ’ exp [iubh + i(° + p')x] dx  (3.6d)
“—L

and the locations of the source and observation points are

functions, the lateral-wave transform H,(x,u) is

H(xu) = a}(xu’)0(u — v’),,, p=0,10rS (42)
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Fig. 2. The scattered surface wave due to incident lateral waves.

where a,(x,u) is defined by (4.1) and 6(u — u’)and é, ; are
the Dirac and Kronecker delta functions, respectively. The
differential equation for the forward-scattered surface-wave
amplitude a,(x,u,) due to an incident lateral wave (4.2)is [4].

2 o) — iByay(c) ~ SEM e Nas(car®)  (43a)

dx

in which the transmission scattering coefficient S is

l// 1 (uaah )‘Ps(us ’h )h'
2('080(ﬁ‘5 - ﬁs)

SsBlA(umua) =

- [B°B, + uuy,] |1 — glJ (4.3b)

r

and W (u,,h) is the basis function for the surface waves [3].
Thus

) = —exp (~ifx) | SHH ()

- dy(x"u’) exp (iB,x') dx' (4.4a)
and the scattered surface wave for x > Land y > h is

Hi(x,y) = a(xu)¥(ush) exp (—iugy).  (4.4b)

Hence,
Hi(x,y) = K exp (—if;x — ig,y) exp [—iugyo + iﬁ"xo]
1
: (ﬁéﬁs + uguls) (1 - E;) [lPs(us’h)]2
i
(L= PR~ B,

_ "" h exp [—iudh — i(B° — B,)x'} dx’

[iB°(x" — xo — y, tan &')]>2

(4.5)

and on integrating by parts and neglecting edge effects

Kiwe2rn .
Hi(x,y) = WCXP [—i(udyo — Bx0)]

ik LF (ugt®) (ug,u’h,L) exp [ —iuosy + Bosx)]
(4.6a)
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where
1 5 exp[—iudh—i(B° — B)x'
HhL) =27 J_L [1Ijr[(y0 n 5 (—ﬁx')/fo%wJ
. ll + 3 . dx’
2i(f° — B)(x' — xo — yo tan &')
(4.6b)
and
F(ugu®) = [C) + 1][e,/(1 — )2 (4.6¢)

Thus, in (4.6b), the input term is the incident lateral wave
and the output term is the scattered surface wave with the
coupling represented by F(u,,u’)l(u,u’h,L) (see Fig. 2).

For the reciprocal case, the scattered lateral waveduetoa
backward-traveling surface wave of complex magnitude H,
at the origin, (2.6b), is obtained by interchanging the
locations of the source and the receiver. Thus for x < — L,
y>h,and |ki(x + ytan &' — L)| > 1,

Hi(x,y) = Kiwe2n exp [—i{uosyo + BsXo)]
- ik LF(ua,us)I(u‘i,us,h,L)
exp [—ifudy = )]

(2mik, x)*'*
(4.7a)
where
1 " exp[—iugh — i(f° — B)x]
5 _1 s
IWushL) = > _‘_L [1+ (y tan &' — x')/x]>?
1+ ’
20(F = B —x — y tan &)
(4.7b)
and
F(u’u,) = F(ugu’) (470)

Hence (4.6) converts to (4.7) on interchanging x o,y with x,y
and the solutions are consistent with the reciprocity rela-
tionship. In (4.7) the input term is the incident surface wave
and the output term is the scattered lateral wave and
F(u® )l (u’ " h,L) represents the coupling.

The analysis presented in this section is relevant to
problems of propagation near the rough surface of the sea,
the ionosphere, and in dielectric waveguides.

When the source and the observation point are near the
air-ground interface and

% >1 and )Ict >1
10"
I(uy,u’h,L) ~ 3L . exp [—iudh — i(B° — B,)x'] dx’
‘=L
(4.8a)
and
I(ulugh,L) = Hug,u’h,L). (4.8b)
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Fig 3. |FyI| function of @, for koh_, =20, L = 101,, and ¢, = 10 —

i10. Solution I: . Solution II: *. Plane-wave~surface-wave coupling.

Thus the coupling between the lateral wave and the surface
wave is large when over a significant portion of the rough
surface

ud dhjdx + p° — B, ~ 0. (4.92)
Using (2.4a) and (3.2), (4.9a) reduces to
dh &,
E=( 1+e, _\/;')/ 1—&
&, 1/2 & 1/2
=(1__T) _(1_8) . (4.9b)

V. ILLUSTRATIVE EXAMPLES

In this section some numerical results are presented for
the scattered surface waves and lateral waves due to plane
waves incident at angles % over rough surfaces. In view of
the reciprocity relationships these results also give the
scattered radiation patterns as functions of 6§ due to
incident surface waves and incident lateral waves. In addi-
tion Fy(C,,C"), Fy(C%C") are plotted as functions of 6} for
various values of ¢,. For the case of the scattered radiation
field due to incident surface waves (and the reciprocal case)
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-90° 90°
1.50 0.75 0.00 0.75 1.50
Fig. 4. |FylI| function of 6 for ko, = 20, L = 104y, and ¢, = 10 ~ i.

Solution I: [J. Solution II: *. Plane-wave-surface-wave coupling.

, g0°
1.00 0.50 0.00 0.50 L0

Fig. 5. |FyI| function of 8 for ko by, = 2, L = 104y, and &, = 10 — i10.
Solution I: []. Solution II: *. Plane-wave-surface-wave coupling.

both solution I (2.5b) and solution II (2.8b) are used for
Fy(C,,C"), thus the surface impedance approximation to the
problem is also examined.

The interface between the two media is assumed to be

h(x) = hpax[1 + cos (nx/L)}/2, ~L<x<L (51)

with 2L = 104, and o is set equal to w.,.

In Figs. 3 and 4 | F5(C,C)I(C,,C',h,L) |, the magnitude of
the scattered surface waves, is plotted as a function of
—m/2 < 0 < 7/2 for kgh e = 20, with &, = (10 — i10) and
¢, = (10 — i), respectively, and in Fig, 5 for ko h,,,= 2 and
¢, = (10 — i10). Both a polar and a linear plot are given for
the scattered surface waves in Fig. 3. In all subsequent
examples only the polar plots of the scattered surface waves
are given. When the relative permittivity is large, |¢,| > 1,
the surface impedance approximation is in very good
agreement with the two-media rigorous analysis (Fig. 3).
The discrepancy between the solutions based on the im-
pedance approximation (2.8b) and the two-media analysis
(2.5b) increases as 64 decreases from /2 to —n/2 (Fig. 4).
This discrepancy also increases as |¢, | decreases. For small
values of koh the scattered surface wave is largest for
grazing incidence, 0, — /2 (ko h = 2, Fig. 5). For large
values of koh ., (kohyax = 20), coupling into the surface
wave is largest for near normalincidence, 8% ~ 0 (Figs. 3 and
4). Thus on considering the reciprocal problem, the
scattered radiation field is largest when 64— m/2 for
ko hmax = 2. However, for kg hp,., = 20 the scattered radia-
tion fields are largest in the direction 64 ~ 0. Thus these
results can be used to determine optimum coupling into and
out of surface-wave structures (dielectric waveguides).
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Fig 7. |Fy| function of 8 for e, =3 — i09. Solution I: . Solution II:
* Plane-wave-surface-wave coupling.

In Figs. 6 and 7 the normalized functions F \(C,,C'), (2.5b)
and (2.8b), are plotted for ¢,= 10 —i and ¢, =3 — 0.9,
respectively. Thus for |e,| > 10, the surface impedance
approximation is in good agreement with the rigorous
two-media analysis, except for 85 — —x/2. This agreement
deteriorates as |¢,| decreases. The minima of the function
F(C,,C"), (2.1b), occurs when

= CL. (52)

Equation (5.2) is satisfied when tan 6}, = n’ = tan 63,
where 6¢ is the Brewster angle. Thus dielectric waveguides
cannot be excited efficiently at the Brewster angle.

In Figs. 8 and 9 the magnitude of the scattered lateral
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Fig. 10  |FyI| function of 8 for kyh,,, = 2, L =104, &, = 0.5. Plane-

wave-lateral-wave coupling.

waves |Fy(C° CHI(C? C', h, L)|, (3.1), is plotted as a
function of the angle of incidence (—n/2 < 6, < n/2) of the
plane waves for ko hp,, = 20 and &, = 1 — X/(1 — iZ) with
X=05,Z=0and X =05, Z = 0.1, respectively. In Fig.
10, kohpax = 2and ¢ = 1 — X = 0.5. Thus for small values of
koh (Fig. 10), the scattered lateral wave is largest when the
incident plane wave is at the critical angle for total internal
reflection 6}, = 6’ = 45° (3.3). For large values of ko i (Figs. 8
and 9) strong coupling into the lateral waves occurs for
several directions between 45 and 75°. Thus for the recipro-
cal case the scattered radiation pattern due to an incident
lateral wave has only one major lobe in the direction of the
critical angle 04 = &' = 45°, for ko My = 2. Forkoh = 20
the radiation pattern has several major lobes between
04 = & and 75°. When dissipation is accounted for in medi-
um 2 (Z = 0.1, Fig. 9), the lobe structure of the scattered
lateral wave (or the reciprocal scattered radiation pattern)
becomes more diffuse and coupling between the lateral
waves and plane waves of grazing incidence increases.
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Fig 12. |Fy| function of 8, for & =1~—0.7/(1 — 0.1i). Plane-wave-

lateral-wave coupling.

In Figs. 11 and 12, |Fy(C%C')|, (3.5b), is plotted for
6, =05 and ¢,=1— X/(1 —iZ) with X =07, Z=0.1,
respectively. For nondissipative media F(C?,C'), (3.1b), van-
ishes for

CiC+Sh=0. (5.3a)
This accounts for the sharp null in Fig. 11 at
sin @ = —sin 6 cos § = —n(l —n?)*2, 65 = —30°.

(5.3b)
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For dissipative media (Fig. 12) the minima occurs at

sin 65 = —sin &' cos &, b~ —27°  (5.3c)
This is the principal reason why the forward-scattered
lateral waves are very small for 85, < 0 even for large values

of ko h

»

VI. CONCLUDING REMARKS

In this paper full-wave solutions are presented for the
guided surface waves and lateral waves excited at the
irregular boundary between two semi-infinite media.
The explicit solutions are presented in a form that can be
teadily used. Thus the incident wave, which could be the
radiation field, the surface wave, or the lateral wave is related
to the scattered (output) field through the factors F and I,
which depend on the electrical and the geometrical par-
ameters of the irregular boundary.

The validity of the surface impedance approximation is
examined for the case of coupling between the radiation
fields and the surface waves. It is shown that the impedance
boundary condition yields results that are in good agree-
ment with the rigorous two-media analysis provided that
[e,| > 1. The discrepancies between the two results in-
creases as |¢,| decreases and as 6%, — n/2. There is a sharp
minima in the function F(C,,C') when 6}, = 6§ (the Brewster
angle). Thus coupling between surface waves and plane
waves incident at the Brewster angle 0, = 05 is negligible. It
is interesting to note that at the Brewster angle Ry(u) = 0
and that I/R,(u,) = 0 for the surface waves. However, both
the plane waves at the Brewster angle and the surface waves
are characterized by the same wave parameter B.

For the examples considered in Section V coupling
between the incident plane waves and surface waves is
maximum for 6} = n/2 when kyh,, = 2. However, for
ko hax = 20, the coupling is maximum for 8 ~ 0.

Similarly, it is shown that for koh,,,= 2 coupling be-
tween the incident plane waves and the lateral wave is
maximum for a plane wave incident at the critical angle for
total internal reflection 6} = &'. For ko h,,., = 20, however,
there are several directions between 6% = &’ and 6, — n/2 for
which the coupling is strong. Thus for the reciprocal prob-
lem, the scattered radiation pattern has several large lobes
for kg hyax = 20 and only one in the direction of the critical
angle 6§ =6 when kyh,,, =2 The surface impedance
approximation cannot be used te determine the coupling
between the plane waves and the lateral waves.

Coupling between the lateral waves and the surface waves
are also considered in detail and the results are shown to be
consistent with reciprocity. The region of the rough surface
where most of the contribution to coupling occurs is also
specified (4.9b). In this case too, the impedance boundary
condition cannot be used.

For all the cases considered in this paper the physical-
optics- or Kirchoff-type approximation for the boundary
conditions cannot be used to obtain the scattered surface
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waves, the lateral waves, or even the scattered radiation (far)
fields due to incident surface or lateral waves.

This work is of particular interest in propagation prob-
lems when either the transmitter or receiver are near the
irregular boundary. It is applicable to problems of coupling
into and out of surface-wave structures. The electromagnetic
problems considered here and the dual problems in
acoustics are relevant to geophysical prospecting and active
remote sensing.
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Traveling Waves in Coupled Yagi Structures

CHUN C. LEE anp LIANG C. SHEN, SENIOR MEMBER, IEEE

Abstract—The propagating mode in a coupled Yagi-Uda array of
cylindrical wires is studied. The current distribution in each element,
the phase velocity; and the cutoff frequency of the propagating mode
are found, firstly by a numerical method and secondly by a method
based on an assumed current distribution. These two methods yield
essentially the same results. Mutual coupling between the arrays is
studied. The characteristics of the propagating waves in the coupled
Yagi-Uda structure have been measured. The experimental K-
diagram of the waves is obtained and is found to be in good agreement
with the theory.

I. INTRODUCTION

TRAVELING WAVE can be supported on a periodic
Aarray of identical wires or strips that are equally spaced
and perpendicular to the direction of the array. The exist-
ence of the traveling wave in such a structure, known as an
infinitely long Yagi-Uda array, has been confirmed by
theory and by experiments [1]-[5]. The traveling wave is a
slow wave, that is, the phase velocity is smaller than the
velocity of a uniform plane wave in the same medium in the
absence of the structure. When one of the elements of
the array is excited, currents on the parasitic elements are
induced by a mutual coupling effect, resulting in a traveling
wave. These currents have progressive phase shifts. The
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Fig. 1.

Coupled three-row Yagi-Uda structure.

amount of phase shift and the distribution of the current in
each element are determined by the array geometry. This
information is useful when the structure is employed for uses
such as millimeter waveguides or antennas [6].

In order to carry more power or to divide it equally
among several branches when the structure is used to
transmit millimeter waves, several similar ones may be
arranged in parallel in the same plane, as shown in Fig. 1.
When used as an antenna, this arrangement could produce
an elevation beamwidth that is narrower than that of a single
Yagi array.

The present study also indicates the level of mutual
coupling between two closely spaced Yagi structures when
they are used separately for millimeter-wave transmission.

Little work has been done on the subject of coupled Yagi
arrays. A study was made not long ago to obtain the phase
velocity of a traveling wave on two Yagi arrays arranged in



