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Coupling Between Guided Surface Waves,
Lateral-Waves,

by Rough
and the Radiation Fields’
Surfaces—Full-Wave
Solutions

EZEKIEL BAHAR.

Abstract—In this paper explicit expressions are presented for the

guided surface waves and lateral waves that are excited when
radiation fields are incident upon rough surfaces. Similarly, expres-

sions are presented for the radiation fields scattered by rcwgh surfaces
that are excited by surface wavea and lateral waves. In addition,

coupling between the surface waves and the lateral waves due to
surface irregularities is considered in detail.

The solutions, which are based on a full-wave approach to the
problem, are subjeet to the exact boundary conditions at the irregular
interface. These are shown’ to be consistent with the reciprocity
relationship in electromagnetic theory.

The validity of the approximate impedance boundary condition is

examined and consideration is given to excitation at the graziug
incidence, the Brewster angle, and to waves incident at the critical

angle for total internal reflection. Optimum conditions are deter-
mined for coupling between the radiation fields, the smface waves,
and the Iateral”waves incident upon irregular boundaries. Thus this
work is applicable to problems of radio wave propagation near an
irregular interface between two mdla and excitation of guided wavea
by irregular dielectric structures.

I. INTRODUCTION

RADIO WAVE PROPAGATION over irregular sur-

faces with variable electromagnetic parameters has

been investigated extensively. The methods used to analyze

this problem vary considerably and the results significantly

depend upon the approximate assumptions made to sim-

plify the derivations. Thus, for instance, employing the

Rayleigh hypothesis, the scattered fields are represented by a

discrete spectrum of upward traveling waves [1], and, using

the Kirchoff approximations, the physical optics solutions

are obtained by characterizing the irregular boundary by the

Fresnel reflection coefficient for the local tangent plane [2].

The solutions derived in this paper are based on a

full-wave approach [3], [4]. Thus the total fields are ex-

pressed in terms of a complete spectrum of upward and

downward traveling radiation fields, lateral waves, and

surface waves. At the irregular boundary, the total fields are

subjected to the exact boundary conditions. Since the

individual terms in the complete field expansions do not

satisfy the boundary conditions for irregular surfaces, uni-

form convergence of the field expansions cannot be
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the full-wave approach, Green’s

theorem is employed to avoid term by term differentiation of

the field expansions. An approximate impedance boundary

condition has also been considered in detail and the full-

wave solutions have been compared with earlier solutions to

this problem [5], [6].

In this paper, explicit full-wave solutions are given for the

guided surface waves and lateral waves excited by plane

waves incident upon rough surfaces. These solutions are

provided in a form that can readily be used by engineers who

are not familiar with the analytic techniques used in their

derivation. They can also be applied to periodic and random

rough surfaces [5], [6]. Since the scattered radiation fields,

due to incident plane waves, vanish as the transmitter or
receiver approach the surface of the irregular boundary, the

surface waves and the lateral waves constitute the dominant

contribution to the total fields near the boundary.

Coupling between the surface waves and the lateral waves

propagating over irregular boundaries is considered in

detail. The region of the irregular surface where maximum

coupling occurs between the lateral and the surface waves is

determined.

The full-wave solutions are shown to be consistent with

the reciprocity relationship in electromagnetic theory. Thus

plots of the scattered surface waves and lateral waves as

functions of the incident angle of the plane waves also

represent the scattered radiation pattern for an irregular

surface excited by incident surface waves and lateral waves.

Several illustrative examples are given in Section V with

special consideration given to excitation at the grazing

incidence, the Brewster angle, and the critical angle for total

internal reflection. The validity of the approximate im-

pedance boundary condition is also examined.

II. FULL-WAVE SOLUTIONS FOR THE SCATTERED

SURFACE WAVES EXCITED BY LINE SOURCE.S AT

LARGE DISTANCES FROM A ROUGH SURFACE

AND THE RECIPROCAL PROBLEM

A line source at large distances above a rough surface will
excite scattered radiation fields as well as guided surface

waves [4]. Since the scattered radiation field approaches

zero as the observation point approaches the surface,

0~ ~ 7c/2, the surface wave is the dominant term near the
interface y = h(x). The coupling of plane waves into surface

(guided) waves of the structure by surface irregularities is
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Fig. 1. The scattered surface waves and lateral waves due to incident
plane waves over a rough surface.

also relevant to problems of coupling into and out of

dielectric waveguides.

On expressing the electromagnetic fields in terms of

generalized Fourier transforms and imposing exact bound-

ary conditions at the irregular boundary [3], [4], it can be

shown that the scattered vertically polarized surface wave at

(x,y) due to a magnetic line source of intensity K (volts)

located at (XO,yO) in medium O (Fig. 1) is

H
j~ 112

II;,(x,y) = I ~~ I exp [– iko po] ; 4ik0 LF(C,,Ci)
c

~l(C,,C”,/z,L) exp [– i(/?,x + UO.y)] (2.la)

c~cl, – sos~,
(2.lb)F(C.,Ci) = (c- + C; /n)iz(l + l/&,)

and

I(c,,ci,h,L) = ~ : exp [iuj h + i(~5 – /?)x] Lx. (2. lc)

An exp (i~t) time de~endence is assumed and ~11~ I is the

magnitude of the unperturbed incident wave at the origin:

I@)/= KOc&o/2[2nkOCpO] ’12. (2.ld)

The irregular deterministic boundary is given by (Fig. 1)

y = h(x), –L<xs L (2.2a)

and PO = (x3 + y~)l’z > 1 is the distance from the magnetic

line source to the origin. The wavenumbers for media Oand 1

are

~ = /kO = m(/JOeO)l/2, y > h

\kl = O(plsl)”z, y < h
(2.2b)

and ko, is the wavenumber at the carrier frequency q. It is

assumed here that p and e are not functions of x and p 1 = PO.

The complex refractive index is

n.~,=a. (2.3)

The surface wave parameters are solutions to the modal

equation

uo.e~+ z41, &()= o, Im (Uo,l) <0 (2.4a)

thus

J E,
Ul~ = klC1, = kl —

1+8,
(2.4b)

and for a plane wave incident at angle @oin medium O

~ = ko,,si,l = ko,l sin 13L,I

U~,l = ko,l C~,l = ko,l COSo~,l. (2.4c)

For a plane wave at grazing incidence 9; - z/2 and co = COC

[F(c.,c~ = o) 10,

= [(1-:)’’2-11&f’(&:-1)1’2(&,+1)0; ‘25a)
In this work it is convenient to normalize F such that

FN(C,,C’) = F(c.,ci)/ I F(c,,o) Ioc. (2.5b)

Thus in (2.la), the input term I @o I exp [– iko po] is the

incident radiation field and the output term

exp [– i(fl, x + usy)] is the scattered surface wave (see Fig.

1). The coupling phenomenon is represented by F(C~,Ci),

which is a function of the angle of incidence and the ground

parameters only, and I(C,,C,h,L), which is the only term

that depends on the expression for the rough surface h(x).

Similarly it can be shown that for backward-traveling

surface waves of complex magnitude Hso at the origin, the

scattered radiation field at the observation point x,y is

j~ 1/2

(1

H;.(x,y) = H.o ; 2koCb(l – l/&:)
c

“ F(C~,C,)l(C~,C,,h,L)
exp [– iko p]

[2nkoCp]’2
(2.6a)

where H~o, the amplitude of the incident (unperturbed)

surface waves at the origin, is [3]

H,. = HJO,O)

= Kio.)eo exp [ – i(fl,xo + uo,yo)]/n(l – l/&~) (2.6b)

and

cfc15 + S{So.
‘(C7’CJ = (c~+ c,/n)n(l + 1/8,)

(2.6c)

FN(cf,c.) = q@L’J/ IWI,) lo, (2.6d)

I(C~,C~,h,L) = ~ ~ exp [iuj h + i(j?, + ~~)x] dx. (2.6e)
L

Equation (2.6a) reduces to (2.1 b) on interchanging the

locations of the source and the receiver. Thus

PO+P X+x. Y+YO Oj + -6~ (2.7)
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and the results are consistent tith reciprocity relationships

in electromagnetic theory. As a consequence, th e plot of the

scattered surface wave as a function of @O(2. la) is the same as

the plot of the scattered radiation field as a function of OJ

(2.6a). In (2.6a), the input term is H,o, the incident surface
wave, and the output term is exp [— ikp]/[2kOCp] 1/2, corre-

sponding to the scattered radiation field. The expression

between these two terms represents the coupling

phenomenon.

Using the approximate impedance boundary condition

[5], the expression for the scattered surface wave due to a
magnetic line source at (xO,yO) is also of the form (2.lb)

except that here [5], [6]

F(C,,Ci) = Z,So,(So, – S~)/(do + z~)(l – z~)l/2 (2.8a)

and

IF(C,,C: = O)loc = /(1 - Z:)’/’ -1 Io,c

Fjy(C,,Ci) = F(C,,Ci)/ I F(C,,O) IO, (2.8b)

where z, is the normalized surface impedance

z~ = zJq~ + (8, — 1)1’2/%> Im (z,)> O (2.9a)

and the surface-wave parameters are solutions of the modal

equation

u~, = –k~z,. (2.9b)

Thus

P,= ~osos = k)(l – z;)’/2, Im (j3,) .<0

and

Uo~ = k. Co~ = —koz~, Im (UOJ <0. (2.9c)

The corresponding expression for the scattered radiation

field due to an incident surface wave of complex amplitude

H,. at the origin is

()
im 1/2

H%>Y) = ~so ~
Zk J1 - zJ’/2

Oc
c z,

“ F(cf,c,)qcf,c.,h,q ‘~n[’jy~ (2.10a)

in which

li.~ = H,(o,o)

Kiweo z.
= (~ _ Z:)vz exp [– i(~,xo + uo.ye)] (2.10b)

qcf,q = %%,(s0, + st)/(c{ + Z.)(1 – Z;)l’2 (2.1OC)

FN(cf,c.) = F(cf,c,) I F(O,CJ Ioc (2.10d)

and l(Cf,CJ,L) is given by (2.6d). ‘Thus (2.10a) reduces to
(2.8a) provided that one interchanges the locations of the
source and the receiver (2.7) and the solutions d~erived from

the impedance boundary conditions are also consistent with

reciprocity. It should be pointed out, however, that using the

impedance boundary condition one obtains an extraneous

coupling term D(Cf,C,) [6], which for moderately smooth

boundaries is proportional to Z,(dh/dx)2. The term D(Cf,CJ

has no counterpart in the exact analysis [4] and is therefore

neglected in the present derivations.

Using a physical-optics- or Kirchoff-type approximation

for the surface wave on the boundary y = h(x), for x > XO

Hz,(x,y) = H:(x,y)

(2.lla)

and

. - )]H&,y). (2.llb)—i[ii. (/il~ZX +“uo~uY

Thus on substituting (2.11) into the Hehnholtz equation [2]

one obtains H;, = O for the physical optics approximation

to the scattered radiation (far) field. Thus the physical optics

approach fails to determine the scattered radiation fields in

the Fraunhofer zone, when the incident field is a surface

wave, because the physical optics approximation for the

surface wave at the boundary is not appropriate.

III. FULL-WAVE SOLUTIONS FOR THE SCATTERED

LATERAL WAVE EXCITED BY LINE SOURCESAT

LARGE DISTANCES FROM A ROUGH SURFACE

AND THE RECIPROCAL PROBLEM

In addition to the scattered radiation field and the

scattered surface wave (Section II), a plane wave incident

upon a rough surface will couple into a lateral wave [4]. Thus

the scattered vertically polarized lateral wave at (x,y) due to

a magnetic line source of intensity K (volts) located at

(Xo,yo) in medium O (Fig. 1) is

1 (2L/AJ
H~O(x,y) = IHi I exp [– ikopo] —

2rc (L JAc)3/2
F(Ca,Ci)

. I(C’,Ci,lz,L) exp [– i(kl L1 + kOLp)] (3.la)

where

F(C6,d) = (nC’l C: + ~oS:)/(~o + Cj /n)n3f2tr (3. lb)

and

I(C’,Ci,h,L) = ~ [IL exp [iu~k + i(/Y – #?’).x] h (3,1c)

in which AC is the free-space wavelength at the carrier

frequency OJC:

The parameters for the incident wave are the same as in

Section II, (2. ld) and (2.4b). The lateral waves are of

practical significance only for low-loss medium 1 where

n = n’ – in” = s: = sin b = sin (6’ – id”)

E sin & — itY’ cos 6’ (3.3)
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thus

;! y + flax = kO[cos (6)y + sin
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interchanged. Thus

(i5)y tan@) po+p X+x. Y+YO 6L + -6{. (3.7)

+ sin (ti)(x – y tan 6)]

= ko~/cos 6’ + ~(X – y tan d’)]

=koLa+kl L1 (3.4a)

and the distances La and LI are (Fig. 1)

La= y/COS 8’ and L1 = x – y tan 6’. (3.4b)

Equation (3.la) is valid for Ikl \ L1 >1 in view of the

steepest descent method used to derive it. For a plane wave

incident at the critical angle Oh = &

{[1 – (n’/n)’]’/’ Cos d + n’}/n’/’
(3.5a)

= n[l – (n’)2]112 + [1 – (n’/n)2]1’2 ~=me

Hence (3.6) and (3. 1) are consistent with the reciprocity

relationship. In (3.6), the input term is the incident lateral

wave Hlo and the output term exp [– iko p]/[2zkoCp] 1’2 is

the scattered radiation field. The expression between these

terms F(Cf,C3)I(Cf,CJ,h,L) represents the coupling

phenomenon.

Using the constant surface impedance concept, the

lateral-wave contribution to the total field due to the branch

cut Im (ul ) = Ovanishes. Thus if the lateral wave constitutes

a significant part of the total field the surface impedance

concept cannot be used [3].

Furthermore, a physical-optics-or Kirchoff-type approx-

imation for the lateral wave on the boundary y = h(x) for

lkll(x- xo-(y+yo) taniY)>l, is

()
1/2

– KCOCEO~

Hz~ = Iqx,y) =
exp [– iko(y + yo)/cos & – ikl(x – xo – (Y + YO) tan ~’)1

(1 - n2)2(2m)2n3/2 [{x - X. – (y + yO) tan 6’}/&] 3/2
(3.8a)

and the function F (3. lb) is normalized such that

FN(C’,C’) = F(C’,Ci)/ I F(C’,C~ = COS6’) [.,. (3.5b)

In (3. la) the input term I Hi \ exp [– iko po] is the incident

radiation field and the output term exp [– i(klL1 + kOL~)]

is the scattered lateral wave (see Fig. 1). As in Section II, the

coupling is represented by the factors F(Cd,Ci) and

I(c~,c~,h,L).

Similarly, for a backward-traveling lateral wave of com-
plex magnitude Hjo at the origin, the scattered radiation

field at the observation point (x,y) is

i~ 1/2

()

H;l = – H/o ; 2koCL(l – n2)n3/2
c

“ F(Cf,Ca)l(Cf,C6,h,L) exp [– &pl (3.6a)

[2nkoCp]’/2
where

Hlo =

-K@c’’’W2exp [-iko(+)-ik’(xo-yotan”)l

(1 - n2)2(2z)2n3/2[(xo - yO tan &)/&] 3/2
(3.6b)

Ikll(x- x,-yotand’)>l,

X. < —L, and lnl<lis [3]

and

-im8dz. (tide)=*= – i[ii . (&%X + U: EY)]H;(X>Y).

(3.8b)

On substituting (3.8) into the Helmholtz equation [2],

H;l = O for the physical optics approximation to the

scattered radiation field. Thus the physical optics approxi-

mation for the incident lateral wave at the boundary cannot

be used to determine the scattered radiation fields in the

Fraunhofer zone.

IV. COUPLING BETWEEN THE LATERAL WAVES

AND THE SURFACE WAVES OVER A

ROUGH SURFACE—FULL-WAVE SOLUTIONS

In addition to coupling between the radiation fields and

the surface and lateral waves considered earlier, the excita-

tion of a scattered surface wave due to an incident lateral

wave over a rough surface and the reciprocal problem (Fig.

2) is considered here in detail.

The expression for the incident lateral wave near the

boundary for

– Ki@&o exp [– iugy. – i~’(x – x.)] exP (– i~o h)~l(%y) _ ~~(x,u~)~l(u~,y)

‘z(x’y) = (1 - iz2)2(2z)’f2[if?’(x - X. -y. tan d’)]3/2~1(u,h)
(4.1)

F(Cf,Ca) = (nC\ C: – S{S~)/(C~ + dl/n)n3’28, (3.6c)
in which V ~(u,y) is the basis function associated with the

contribution from the branch cut Im (u J = O [3]. Thus on

I(cf,cJ,h,L) = * “:
applying the orthogonality relationships between the basis

exp [iu{ h + i(~d + flf)x] dx (3.6d) functions, the lateral-wave transform H1 (x,u) is
L

and the locations of the source and observation points are Hl(x,u) = a~(x,ud)d(u – uJ)dP,~, p = O, 1, or S (4.2)
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Fig. 2. Thescattered surface wave due coincident lateral waves.

where al(x,u) is defined by (4.1) and 6(u – u~) and 6P,1 are

the Dirac and Kronecker delta functions, respectively. The

differential equation for the forward-scattered surface-wave

amplitude a,(x,u~) due to an incident lateral wave (4.2) is [4].

d——
dx

aJx,r4) — M as(x,~s ) = S~f(uJ)al(x,uJ) (4.3a)

in which the transmission scattering coefficient S~~ is

and Y,(uJ) is the basis function for the surface waves [3].

Thus

,L

CZJX,UJ= – exp (– i/3,x) s:~(u,,u*)
“–L

. aj(x’,u~) exp (i#,x’) dx’ (4.4a)

and the scattered surface wave for x > L and y > h is

Hf(x,y) = a,(x,u,)y.(u,,h) exp (– iuO,y). (4.4b)

Hence,

()“ (m,+ 43%s) 1-: [Ys(tkl)]’
r

(1 - n’)4(2&(@ - p,)

. L h’ exp [– iu~h – i(fl~ – /l,)x’] dx’

‘-L [i~’(x’ -x. -y, tan6’)]3/2–

(4.5)

and on integrating by parts and neglecting edge effects

Kim&2rc

‘f(x’y) = (-2nik1xO)
3,2 exp [– i(u~ yO – /laxO)]

“ ikOLF(U,,U6)I(U#,h,L) exp [– i(uo,y + flo, x)]

(4.6a)

where

I(UJJZ,L) = + (L
exp [– iu~ h – i(fla – fl,)x’]

~~ .-L. [1 + (yI) tan& - x’)/&j]3/2

[ I“ 1+Zi(fla – P )(x’ –3xo–“y. tan ~’) ‘x’
s

(4.6b)

and

F(u,,uq = [c: + l][&r/(l – &:)]’/’. (4.6c)

Thus, in (4.6b), the input term is the incident lateral wave

and the output term is the scattered surface wave with the

coupling represented by F(u,,ua)l(uJ,h,L) (see Fig. 2).

For the reciprocal case, the scattered lateral wave due to a

backward-traveling surface wave of complex magnitude H,.

at the origin, (2.6b), is obtained by interchanging the

locations of the source and the receiver. Thus for x < – lJ

y>h, and lkl(x+ytand’–l,)l >1,

H~(x,y) = Kim2z exp [– i(uo, y. +

“ iko LF(u6,u,)I(ud,u~, h,L)

, exp [– i(u~ y – J?~x)]

(2nik1 x)312

where

/l.xO)]

(47a)

I(ua,u,,h,l,) = ~
“L exp [– iu~h – i(~d – ~Jx’]

2L .- L [1 + (y tan 6’ – x’)/x]312

[
“ 1+

3

2i(/?d – fl,)(x’ – x – y tan 6’) I

(4.7b)

and

F(u~,uJ = F(u,,z$). (4.7C)

Hence (4.6) converts to (4.7) on interchanging xO,yOwith x,y

and the solutions are consistent with the reciprocity rela-

tionship, In (4.7) the input term is the incident surface wave

and the output term is the scattered lateral wave and

F(ub,us)l(u~,us,h,L) represents the coupling.

The analysis presented in this section is relevant to

problems of propagation near the rough surface of the sea,

the ionosphere, and in dielectric waveguides.

When the source and the observation point are near the

air–ground interface and

I(u,,u~,h,L) = ~ 1: exp [– iu~h – i(/?a – fl,)x’] dx’
L

(4.8a)

and

(4.8b)l(ua,u,,h,L) = I(us,uJ,h,L).
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Fig. 3. [FN I I function of &o for k. hma, = 20, ~ = 10~0,and s,= 10 –
i lO. Solution I: ❑ . Solution 11: *. Plane-wave-surface-wavecoupfing.

Thus the coupling between the lateral wave and the surface

wave is large when over a significant portion of the rough

surface

U: dhfdx + /?a– fl~ = O. (4.9a)

Using (2.4a) and (3.2), (4.9a) reduces to

:=(J% -&)//=+

‘(+4’’2-(=+2 ‘49’)
V. ILLUSTRATIVE EXAMPLES

In this section some numerical results are presented for

the scattered surface waves and lateral waves due to plane
waves incident at angles 0~ over rough surfaces. In view of

the reciprocity relationships these results also give the

scattered radiation patterns as functions of f3{ due to
incident surface waves and incident lateral waves. In addi-

tion FN(C,,Ci), FN(Cd,Ci) are plotted as functions of do for
various values of .s,. For the case of the scattered radiation

field due to incident surface waves (and the reciprocal case)

-90° 900

1.50 0.75 0.00 0.75 1.50

Fig. 4. IFNI I function of Ohfor k. hmaX= 20, L = 10AO,and 8, = 10 – i.
Solution I: ❑ . Solution 11: *. Plane-wave-surface-wave coupling.

-90° 90°

1.00 0.50 0.00 0.s0 1.00

Fig. 5. IFN I I function of Ohfor k. hmax= 2, -L= 1010, and 8, = 10 – i lo,

Solution I: ❑ . Solution II: *. Plane-wave-surface-wave coupfing.

both solution I (2.5b) and solution II (2.8b) are used for

FN(C~,Ci), thus the surface impedance approximation to the
problem is also examined.

The interface between the two media is assumed to be

h(x) = h~,,[l + COS (7cx/L)]/2, –LSX <L (5.1)

with 2L = 102C and co is set equal to co,.

In Figs. 3 and 4 I FN(C~,Ci)l(C,,e,h,L) 1,the magnitude of

the scattered surface waves, is plotted as a function of

–7r/2 < 6L < 7c/2 for kOh~aX= 20, with e,= (10 – ilO) and

E, = (10 – i), respectively, and in Fig. 5 for k. hm,X = 2 and

&, = (10 — i lO). Both a polar and a linear plot are given for

the scattered surface waves in Fig. 3. In all subsequent

examples only the polar plots of the scattered surface waves

are given. When the relative permittivity is large, It, I >1,

the surface impedance approximation is in very good

agreement with the two-media rigorous analysis (Fig. 3).

The discrepancy between the solutions based on the im-

pedance approximation (2.8b) and the two-media analysis
(2,5b) increases as 0{ decreases from n/2 to – 7c/2 (Fig. 4).

This discrepancy also increases as I E, I decreases. For small

values of koh the scattered surface wave is largest for
grazing incidence, f30~ 7c/2 (kOh = 2, Fig. 5). For large
values of kohm,X (k, hm,X = 20), coupling into the surface

wave is largest for near normal incidence, f3~ = O(Figs. 3 and

4). Thus on considering the reciprocal problem, the

scattered radiation field is largest when 0{ ~ 7r/2 for

k. hm.X = 2. However, for kOhma, = 20 the scattered radia-

tion fields are largest in the direction 6$ R O. Thus these

results can be used to determine optimum coupling into and

out of surface-wave structures (dielectric waveguides).
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m

IFN \ function of &o for 6, = 10 – i. Solution I: ❑ Solution II: *.
Plane-wave-surface-wave coupling.
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Fig. 7. IFN I function of 8~ for E, = 3 – iO9. Solution I: ❑ . Solution H:
*. Plane-wave–surface-wave coupling.

In Figs. 6 and 7 thenormalizedfunctions FJC,,Ci), (2.5b)

and (2.8b), are plotted for &,= 10 – i and C,= 3 – iO.9,

respectively. Thus for 18, [ > 10, the surface impedance

approximation is in good agreement with the rigorous

two-media analysis, except fore{+ –rc/2. This agreement

deteriorates as Iq I decreases. The minima of the function

F(C,,Ci), (2. lb), occurs when

s: = c;. (5.2)

Equation (5.2) is satisfied when tan Oh = n’ + tan 63,

where 68 is the Brewster angle. Thus dielectric waveguides

cannot be excited efficiently at the Brewster angle.

In Figs. 8 and 9 the magnitude of the scattered lateral

-’”’f———..—

0

A 90°

0.s0 0.2s 0.00 0.2s 0.s0

Fig. 8. IFN I I function of&o for k. hm.X= 20, L = 161., E,= 0.5. Plane-
wave–lateral-wave coupling,

L-90’

0:s0 0.25 0.00 0. 2s 0.50

Fig. 9. [FNI I function of &o for k. hmaX= 20, L = 10AO, e,= 1 –
0.5/(1 – O.lt). Plane-wave-lateral-wave coupling.

-90° 90”

1.00 0.543 0.00 0.s0 1.00

Fig. 10 IFN I I function of&o for k. hmaX= 2, L = 101., E,= 0.5. Plane-
wave-lateral-wave coupling.

waves IFN(Ca, Ci)I(C6, C’, h, L) 1, (3. 1), is plotted as a

function of the angle of incidence (– n/2 < (YO< n/2) of the

plane waves for k. h~.X = 20 and e,= 1 – X/(1 – iZ) with

X = 0.5, Z = O and X = 0.5, Z = 0.1, respectively. In Fig.

10, kohmax= 2 and& = 1 – X = 0.5. Thus for small values of

k. h (Fig. 10), the scattered lateral wave is largest when the

incident plane wave is at the critical angle for total internal

reflection @o= 6’ = 45° (3.3). For large values of k. h (Figs. 8

and 9) strong coupling into the lateral waves occurs for

several directions between 45 and 75°. Thus for the recipro-

cal case the scattered radiation pattern due to an incident

lateral wave has only one major lobe in the direction of the

critical angle 0{ = d’ = 45°, fork. h~,, = 2. Fork. II ~,X = 20
the radiation pattern has several major lobes between

tl~ = d’ and 75°. When dissipation is accounted for in medi-

um 2 (Z = 0.1, Fig. 9), the lobe structure of the scattered

lateral wave (or the reciprocal scattered radiation pattern)

becomes more diffuse and coupling between the lateral

waves and plane waves of grazing incidence increases.
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Fig. 11. IFN [ function of 00 for 8,= 0.5. Plane-wave-lateral-wave
coupling.

Fig. 12. IFN I function of tl~ for E,= 1 – 0.7/(1 – O.ii). Plane-wave-
lateral-wave coupling.

In Figs. 11 and 12, I FN(C6,Ci) 1, (3.5b), is plotted for
g, = 0.5 and t,= 1 – X/(1 – iZ) with X = 0.7, Z = 0.1,

respectively. For nondissipative media F(Ca,Ci), (3. lb), van-

ishes for

d~c:+s:=o. (5.3a)

This accounts for the sharp null in Fig. 11 at

sin fl~ = –sin d cos 6 = —n(l – nz)i’z, e~ = – 30”.

(5.3b)

For dissipative media (Fig. 12) the minima occurs at

sin 00 = – sin d’ cos 6’, 9; z –27°. (5.3C)

This is the principal reason why the forward-scattered

lateral waves are very small for f3~ <0 even for large values

of k~ h.,

VI. CONCLUDING REMARKS

In this paper full-wave solutions are presented for the

guided surface waves and lateral waves excited at the

irregular boundary between two semi-infinite media.

The explicit solutions are presented in a form that can be

readily used. Thus the incident wave, which could be the

radiation field, the surface wave, or the lateral wave is related

to the scattered (output) field through the factors F and 1,

which depend on the electrical and the geometrical par-

ameters of the irregular boundary.

The validity of the surface impedance approximation is

examined for the case of coupling between the radiation

fields and the surface waves. It is shown that the impedance
boundary condition yields results that are in good agree-

ment with the rigorous two-media analysis provided that

l&,l >1. The discrepancies between the two results in-
creases as [s, I decreases and as 00 ~ z/2. There is a sharp

minima in the function F(C,,Ci) when 80 = 0# (the Brewster

angle). Thus coupling between surface waves and plane

waves incident at the Brewster angle tl~ = tl~ is negligible. It

is interesting to note that at the Brewster angle RO(ui) = O

and that l/RO(uJ = O for the surface waves. However, both

the plane waves at the Brewster angIe and the surface waves

are characterized by the same wave parameter ~.

For the examples considered in Section V coupling

between the incident plane waves and surface waves is

maximum for @o= z/2 when k. h~,, = 2. However, for

kOhm,, = 20, the coupling is maximum for @o= O.

Similarly, it is shown that for k. hmaX= 2 coupling be-

tween the incident plane waves and the lateral wave is

maximum for a plane wave incident at the critical angle for

total internal reflection @o= ~’. Fork. hm,X = 20, however,

there are several directions between kl~ = d’ and @oa 7c/2for

which the coupling is strong. Thus for the reciprocal prob-

lem, the scattered radiation pattern has several large lobes

for k. Jrm,X= 20 ahd only one in the direction of the critical

angle O; = d’ when kOhm,X= 2. The surface impedance
approximation cannot be used to determine the coupling

between the plane waves and the lateral waves.
Coupling between the lateral waves and the surface waves

are also considered in detail and the results are shown to be

consistent with reciprocity. The region of the rough surface

where most of the contribution to coupling occurs is also

specified (4.9b). In this case too, the impedance boundary

condition cannot be used.

For all the cases considered in this paper the physical-

optics- or Kirchoff-type approximation for the boundary

conditions cannot be used to obtain the scattered surface
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waves, the lateral waves, or even the scattered radiation (far)

fields due to incident surface or lateral waves.

This work is of particular interest in propagation prob-

lems when either the transmitter or receiver are near the

irregular boundary. It is applicable to problems of coupling

into and out of surface-wave structures. The electromagnetic

problems considered here and the dual problems in

acoustics are relevant to geophysical prospecting and active

remote sensing.

ACKNOWLEDGMENT

The computations were performed by B. S. Agrawal and

the manuscript was prepared by Mrs. E. Everett.

REFERENCES

[1] S. O. Rice, “Reflection of electromagnetic waves from slightly rough
surfaces,” Communication on Pure and Apphed Mathematics, vol. IV,
no. 3, pp. 351–378, 1951.

[2] P. Beckmann and A. Spizzichino, 7%. Scattering of Electromagnetic
Waues from Rough Surjaces. New York: Macmillan Co., 1963.

[3] E. Bahar, “Generalized Fourier transforms for stratified media,” Cana-
dian J. Physws, vol. 50, no. 24, pp. 3123-3131, 1972.

[4] —, “Radio wave propagation in stratified media with nonuniform
boundaries and varying electromagnetic parameters, full wave
analysis,” Canadian J. Physics, vol. 50, no. 24, pp. 3132–3142, 1972.

[5] —, “Radio wave propagation over a rough variable impedance
boundary: Part I—Full wave analysls,” IEEE Trans ,4rrtenrzas PrOPa-
gat., vol. AP-20, pp. 354-362, 1972.

[6] —, “Radio wave propagation over a rough variable impedance
boundary: Part II—Application of full wave analysis,” IEEE Trans.
Antennas Propagat., vol. AP-20, pp. 362-368, 1972.

Traveling Waves in Coupled Yagi Structures
CHUN C. LEE AND LIANG C. SHEN, SENIOR MEMBER, IEEE

,4bstnzcf-The propagating mode in a coupled Yagi-Uda array of

cylindrical wires is stndied. The current distribution in ench element,
the phase velocity; and the cutoff frequency of the propagating mode

are found, firstly by a numerical method and secondly by a method
based on an assumed current distribution. These two methods yield
essentially the same results. Mutnal conpMing between the arrays is
studied. The characteristics of the propagating waves in the coupled
Ya@-Uda strnctnre have been measured. The experimental K-~

diagram of the waves is obtained and is found to be in good agreement

with the theory.

I. INTRODUCTION

A TRAVELING WAVE can be supported on a periodic

array of identical wires or strips that are equally spaced

and perpendicular to the direction of the array. The exist-

ence of the traveling wave in such a structure, known as an

infinitely long Ya~–Uda array, has been confirmed by

theory and by experiments [1]–[5]. The traveling wave is a

slow wave, that is, the phase velocity is smaller than the

velocity of a uniform plane wave in the same meclium in the

absence of the structure. When one of the ellements of

the array is excited, currents on the parasitic elements are

induced by a mutual coupling effect, resulting in a traveling

wave. These currents have progressive phase :shifts. The
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Fig. 1, Coupled three-row Ya&Uda structure,

amount of phase shift and the distribution of the current in

each element are determined by the array geometry. This

information is useful when the structure is employed for uses

such as millimeter waveguides or antennas [6].

In order to carry more power or to divide it equally

among several branches when the structure is used to

transmit millimeter waves, several similar ones may be

arranged in parallel in the same plane, as shown in Fig. 1.

When used as an antenna, this arrangement could produce

an elevation beamwidth that is narrower than that of a single

Yagi array.

The present study also indicates the level of mutual
coupling between two closely spaced Yagi structures when
they are used separately for millimeter-wave transmission.

Little work has been done on the subject of coupled Yagi

arrays. A study was made not long ago to obtain the phase

velocity of a traveling wave on two Yagi arrays arranged in


